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I. Introduction (Nature and Scope) 

Coaches and athletes around the world are in constant pursuit of improving their 

athletic performance. For some, a routine amount of weight lifting, cardiovascular exercise, 

agilities and flexibility training with gradual advancement may be enough to see growth. 

However, many are not satisfied and turn to in-depth analyses of their techniques in order to 

measure their progress. After an intense workout or competition, coaches spend time 

breaking down athletic performances based on major movements. By compartmentalizing 

these activities, they can identify which motions are efficient and which ones hinder fluid 

motion. From this evaluation and discernment, athletes may then make training adjustments 

to enhance their performances.  

While these observation-based analyses have provided athletes with sufficient 

feedback, they lack the data necessary for optimal improvement. Thus, for athletes to reach 

their full potentials, more precision is required. Using mathematical practices to analyze an 

individual’s biomechanics permits evaluation of every detail of an athlete’s motion. Not only 

does this account for motions missed but it also eliminates the subjectivity of the human eye. 

The addition of this technicality generates all-encompassing, cohesive data that can be 

practically applied. 

In the same way, statisticians are in constant pursuit of an ideal method for data 

analysis. Using statistics as their platform, mathematicians conduct studies in a variety of 

fields, organizing and evaluating data from which they may draw conclusions. Whether in 

pure math or practical applications, various statistical models have proven effective in 

quantifying results. Still yet, research continues for the perfect statistical model.  
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Principal component analysis is a century-old method of data analysis that has been 

implemented over the past several decades. Using statistics as its basis, principal component 

analysis interprets observations and organizes the data into sets based on repetition and 

pattern. This organization into sets establishes the principal components, or main aspects, of 

the given data. By consolidating data into fewer variables, principal component analysis 

allows the researcher to assess information in a much simpler way. 

While the concept may appear basic in nature to the naked eye, principal component 

analysis is dynamic and extends across the entire spectrum of mathematics. While rooted in 

statistics, it may be more specifically implemented and analyzed through the lens of linear 

algebra. In fact, several linear algebra concepts are fundamental to one’s understanding and 

the development of principal component analysis. A few relevant linear algebra topics 

include matrix transformation, orthogonality, eigenvalues and eigenvectors.  

In addition to emphasizing the discovery learning process charged by mathematical 

research, this thesis focuses on principal component analysis as an advanced tool for data 

analysis in a variety of settings. Each chapter within this paper is structured to portray the 

history, theory, conceptual development, and mathematical applications of principal 

component analysis. Additionally, this thesis explores the relationship between this analysis 

method and the field of biomechanics. More specifically, this relationship is characterized for 

both generalized athletic movement and competitive running. The various aspects of this 

concept are designed to build the reader’s understanding of principal component analysis 

while addressing the following research question: 
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How do the multivariate analysis methods of principal component analysis (PCA) make an 

impact on our understanding of athletic activity and biomechanical motion? 

II.  Overview of Principal Component Analysis 

Defined very generally, principal component analysis is “a mathematical procedure 

that transforms a [large] number of possibly correlated variables into a smaller number of 

uncorrelated variables called PC” (Suryanarayana and Mistry 20). The acronym “PC” is a 

short-hand way of referring to the identified principal components of a data set. More 

specifically, principal component analysis is a “quintessential data-crunching procedure” that 

is used to represent a data set for more efficient interpretation (Meyers et al. 404). It is 

purposed with both “dimensionality reduction [and] data compression” (Introduction to 

Principal Components and Factor Analysis). 

The principal components established through principal component analysis are its 

characteristic trademark. As an exploratory form of analysis, principal component analysis 

evaluates all data within a set based on selected variables. In doing so, it determines trends 

and relationships to develop principal components. Contrary to popular misconception, each 

component is a “weighted linear combination of the variables being analyzed based on all of 

the cases in the data file (Meyers et al. 414). In this respect, each principal component is a 

reflection of the entire collection. The first principal component developed for a set 

“accounts for as much of the variability in the data as possible” (Introduction to Principal 

Components and Factor Analysis). 

Within statistics, principal component analysis may be very closely compared to other 

statistical models. One model of considerable similarity is factor analysis (FA). In many 
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respects, principal component analysis closely parallels the purpose, structure and function of 

factor analysis. For this reason, the two are often viewed as interchangeable by individua ls 

who are unfamiliar with their inner workings. While both analyze sets of data with the goal 

of representing it with reduced elements, each of these two statistical methods approach it in 

characteristically different ways.  

The most striking differences between principal component analysis and factor 

analysis is the vocabulary used to reference them and their method for approach of data 

reduction. Although the term “factor analysis” has recently shifted to refer to the general 

field of both principal component analysis and factor analysis, principal component analysis 

should not be considered a subset of the other method. According to Meyers et al., factor 

analysis may be more specifically differentiated as a statistical method for data reduction that 

“shifts [the] perspective around” (Meyers et al. 422). While principal component analysis 

focuses on the identification of principal components based on those in the analysis, factor 

analysis flows from a latent factor back towards the measured indicators.  

This may be further illustrated through a psychological example of phrase association 

with depression (Meyers et al. 422). Using the mechanism of factor analysis, the phrases one 

commonly associates with depression may be viewed as indicators of the disorder. In this 

sense, phrases such as “I can’t do this anymore” or “I’m worthless” are the results of 

someone’s condition. They provide smaller measures for determining the severity of their 

preceding condition. Principal component analysis, however, approaches this quite 

differently. Instead of working “backwards,” principal component analysis views a wide 

variety of variables like these phrases as the causes of depression. The flow of information 
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here is more or less in the “forward direction,” allowing depression to be represented and 

evaluated differently. 

By each principal component referencing the entire collection, the purpose of 

principal component analysis is to provide insight about the total variance of the variables 

being considered. The total variance is quantified as the total number of variables in the data 

set being analyzed. With this goal in mind, principal component analysis undergoes one 

primary procedure for execution. Similar to factor analysis, this procedure takes two 

distinctive phases: an extraction phase and a rotation phase (Meyers et al. 413).  

As one could probably hypothesize, the extraction phase is that in which the principal 

components are identified. Identified individually, principal components are pulled from the 

overall data set to represent part of the original variance in the system (Meyers et al. 414). 

Principal components differ in that they seek to “[explain] the variance in a particular 

orthogonal dimension” (Introduction to Principal Components and Factor Analysis). 

Because principal component analysis is determined for multidimensional systems, each 

component may be conceptualized as a line of best fit for part of the variance. Subsequent 

components to the first must intersect the first component in some way but represent a 

separate partition of the overall variance (Meyers et al. 416). Each subsequent principal 

component established represents the next largest portion of the variance in the data.  

Within the system, correlation between variables is represented by the distances 

between them (Meyers et al. 419). Variables that are strongly correlated in a da ta set are 

closer together while weak correlations are depicted by increased distance. This, along with 

the computed weights of principal components, are considered when interpreting the data. 
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Once all variables have been mathematically extracted and a correlation matrix has been 

constructed, the extraction phase is complete. 

Then, the rotation phase commences. The purpose of the rotation phase is to represent 

mathematical findings before interpreting the results (Warner 772). The objective of this 

rotation is to assimilate data into a simple structure where most components have high 

factor loadings for their respective variables. This simple structure is achieved by the 

“pivoting of the first n number of extracted factors around their point of intersection” 

(Meyers et al. 426). Rotation maintains the integrity of each component by keeping it in the 

same orientation with respect to the others. Since each principal component retains its 

respective portion of the variance, a mathematician can effectively “[redistribute] the 

variance across the factors to facilitate interpretation” (Meyers et al. 426).  

Once the principal components and correlation matrix have been sufficiently rotated, 

interpretation of the principal component analysis results may occur. Because each principal 

component is representative of a different piece of the variance pointing towards the total 

variance, each contributes toward the holistic result. When considering the results of 

principal component analysis, it is crucial to keep other related statistical terminology and 

concepts in mind. These terms include, but are not limited to, orthogonality and component 

loading. Orthogonality is the orientation of two items (in this case, principal components) at a 

90° angle with one another. Component loading is “correlation coefficients between the 

variables (rows) and factors (columns)” used when representing principal component 

analysis in tabular form (Introduction to Principal Components and Factor Analysis). 
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III. Historical Development 

Although the singular procedural nature of principal component analysis suggests one 

root of origin, it is the conglomeration of many statistical efforts that has made it possible. 

Because of the many aspects needed to make it an effective method, it has not been officially 

attributed to one individual. However, the statistician that most commonly receives the most 

credit for the development of principal component analysis is Harold Hotelling. Known for 

his work with economics and    statistical distributions, Hotelling is acknowledged as being 

the statistician that “developed PCA more fully in a 1933 paper in the Journal of Educational 

Psychology” (Millsap 105). From Hotelling’s work, emphasis is placed on the generation of 

orthogonal linear combinations that represent variables with maximum variance (De Leeuw 

2). 

However, the early works of other statisticians have been argued as vital foundations 

to the developments achieved by Harold Hotelling. One that has been nearly equally 

acknowledged is Charles Spearman. In 1904, Spearman established techniques characterizing 

a general version of factor analysis (Meyers et al. 405). As mentioned briefly in the overview 

of principal component analysis, factor analysis closely resembles the structure and format of 

the later principal component analysis. In his published work, Spearman “proposed a two-

factor theory of intelligence” that “gave way to the extractions of several factors” (Meyers et 

al. 405). 

Still yet, Karl Pearson’s published work prior to both Hotelling and Spearman likely 

provided statistical insight necessary for the success of both subsequent mathematicians. 

Pearson’s basic statistical work at the beginning of the twentieth century provided a platform 
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for raw discussion of the need for a technique like these two factor analyses that were later 

developed (De Leeuw 2). 

Aside from these three primary contributors, many smaller but significant efforts of 

other mathematicians exist and are worth mentioning for their influence on the development 

of principal component analysis. Louis Leon Thurstone, a respected mathematician, was 

working on the further development of factor analysis around the same time frame that 

Harold Hotelling was developing principal component analysis (Meyers et al. 405). His work 

on standard deviation and factor analysis likely heavily influenced the simultaneous work of 

his colleague. 

Another early contributor may be Francis Galton. Dating back to the nineteenth 

century, Galton worked heavily in the field of classical analytic geometry. One of his greatest 

accomplishments was the development of “principal axes [that] are connected for the first 

time with the ‘correlation ellipsoid’” (De Leeuw 1-2). This ellipsoid in particular was used 

later on by Pearson to “[cast] the problem in terms of finding low-dimensional subspaces” 

(De Leeuw 1-2). While it is unknown whether or not Galton was aware of the potential for 

principal axes, they set the stage for the later development of principal components in other 

geometric shapes. 

IV. Mathematical Methods through the Lens of Personal Development 

Upon review of the mathematical methods utilized to undergo this research, perhaps 

the most significant developments were of personal concern. As I progressed throughout this 

year-long research, I transitioned from topic to topic. Some topics proved fruitful in my 

pursuit of applying mathematics to athletics. Others did not. With each connection I 
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discovered, my critical thinking and mathematical reasoning matured. While these appear to 

be individual attributes, they were crucial to the development of my conceptual 

understanding of principal component analysis.  

Over the course of these two semesters, I have had the opportunity to explore an 

extension of both my linear algebra and statistics courses through their merging into one 

holistic idea: principal component analysis. While my path is now clear, my journey did not 

begin this way. Originally, my research began in linear algebra. As an athlete, my goal with 

Honors Thesis and Mathematics Research was to apply a linear algebra concept in a practical 

and personal way by connecting it to the sport I love: track and field. When considering 

which topic to explore, my mind went to quaternions. There, I foresaw a relationship 

between quaternion rotations and the dynamic movements associated with throws. I also 

hypothesized potential links to figure skating. 

To understand this concept, I began working through prerequisite material that is 

traditionally covered in Linear Algebra II. The majority of this work consisted of mastering 

the content procedurally, being able to represent and evaluate the necessary computations. As 

I began this process, I also started searching for scientific literature that supported athletic 

applications. Unfortunately, I quickly realized that these two topics were not as closely 

related in verified research as I had speculated. While disheartened by this, I continued to 

work through the Linear Algebra sections. As I progressed into chapter six of Elementary 

Linear Algebra: Applications Version, I found the Gram-Scmidt Process, QR-Decomposition 

and approximation theories. These more advanced topics proposed significant challenges at 

first because of their differences in conceptual processing than the material I had previously 

studied. However, through reading the theory in this textbook as well as others, I finally 
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began to grasp the concepts. To solidify my understanding, I also underwent the process of 

proving various linear algebra theorems and conjectures.  

In the midst of this process, Dr. Poliakova and I had weekly conversations to discuss 

the importance of this new content. Because I still longed to apply my research to the 

biomechanics of track and field, we continued to consider how each of these concepts might 

contribute to one’s understanding of different athletic motions. After much deliberation and 

conversations with my mother and Gardner-Webb University Head Track and Field Coach 

Brian Baker, we came across principal component analysis, or PCA. While this topic requires 

a substantial amount more of background study in order to practice or comprehend, it 

appeared to also show a plethora of applications.  

While it does require more prerequisite material, most of the linear algebra I had 

spent the first two and a half months studying provided a solid foundation for this extension 

of my pursuit. At first, I was hesitant about the mathematical branch change from linear 

algebra to statistics. Out of all the courses I have taken throughout my college career, 

statistics had presented the largest challenge for me. Additionally, after decid ing to select 

courses other than the second anatomy and physiology, my knowledge of kinematic analysis 

was limited. However, with the addition of a few extra sections in linear algebra, I was able 

to start generally exploring principal component analysis.  

Very quickly, I realized that the linear algebra and anatomy subjects on which I 

focused were integral parts as well. After developing a broad view of principal component 

analysis and its purpose, I transitioned into various chapter readings that explained the last 

few sections of linear algebra in a way that made the connections between the two fields 
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much more recognizable. I spent the last few weeks of my research semester diving into 

academic literature that characterized this topic. Although this was frustrating to feel like I 

was only just beginning my primary topic’s research, I gleaned a great deal of knowledge on 

how the mathematics was applied as well as its importance to bridge the gap between experts 

in the various fields. I was anxious to start practicing principal component analysis through 

reading and more studies, evaluating simulations and implementing SPSS technology. 

Throughout the second semester, I have continued to read and explore the intricate 

details of principle component analysis. My primary research has expanded from 

computational practices and readings to the development of its history and an analysis of its 

athletic applications. Although the process has been slow due to personal and familial 

challenges faced this semester, it has been rich. My knowledge of principal component 

analysis has expanded from procedural and computational fluency of linear algebra topics to 

a more extensive conceptual understanding through application.  

Supported by multiple statistical observations and differentiated representations of 

data, I have developed a more cohesive image of principal component analysis’s wide range 

of usages. Conceptual understanding was solidified by proofs of various linear algebra 

theorems and conjectures. Through the continued application of Maple for linear algebra 

topics and SPSS for principal component analysis, this growth has expanded its roots into the 

soils of other branches of mathematics. This, therefore, makes it inclusive to much of the 

overall field of mathematics.  
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V. Review of Literature 

The interpretations and conclusions drawn within this thesis pertaining to the 

importance of principal component analysis for athletic biomechanics are not without 

evidential precedent. Prior to this year- long research, countless statisticians, kinematic 

physiologists and researchers have contributed to the investigation, incorporation and 

substantiation of principal component analysis. Although rooted in mathematics, experts in 

various fields have utilized principal component analysis to organize and qualify data 

representative of varying platforms. Therefore, before demonstrating its importance in 

understanding the biomechanics of running in a later section of this thesis, this review of 

literature strives to exemplify its integrity in a variety of other kinematic contexts. 

Within the realm of biomechanics, principal component analysis has been used to 

investigate the performance and technique associated with multiple athletic movements. In 

the study “The application of principal component analysis to quantify technique in sports,” 

scientists utilized principal component analysis to demonstrate its effectiveness in assisting 

coaches and athletes with better understanding the intricacies of their sports’ respective 

techniques (Federolf et al. 491). While coaches often observe a progression as “the whole-

body movement of an athlete,” Federolf et al. used principal component analysis to break 

down skier posture and technique into smaller, individual movements (492). By doing this, 

they were able to quantitatively compare the techniques of six different alpine skiers at a 

much more microscopic level.  

In data collection, they were able to categorize ski runs into principal movements 

based on joint flexion-extension, postural body inclination, distance between skis and several 
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other factors. For all participants, the first principal movement, denoted PM1, represents “a 

change of posture that enabled frontal plane body inclination through outer leg extension and 

inner leg flexion” (Federolf et al. 494). It was also observed that most subjects had similar 

principal movements but performed them in different chronological sequences. Whereas an 

outside observer would see all of these factors as one motion, the precision of principal 

component analysis shed light on these minute differences that affected individual 

performances. Although sports scientists still face the challenge of “finding an appropriate 

quantitative methodology that incorporates the holistic perspective of human observers,” this 

study supports the stance that principal component analysis can be a “strategy to handle and 

extract useful information from [kinematic] data sets in a wide variety of sports” (Federolf et 

al. 491, 498). 

Principal component analysis has also been used to quantify variance and pattern 

when applied to variables within prolonged intermittent exercise. While prolonged 

intermittent exercise sports such as tennis and soccer have been associated with “fatigue-

related decreases in physical performance in high- intensity running,” the retention of 

comparable vertical-jump heights over time has raised many biomechanical questions 

(Schmitz et al. 319). To investigate this biomechanical peculiarity, scientists used principal 

component analysis to quantify the results of sixty collegiate athletes’ participation in 

intermittent exercise for as long as they could maintain their maximum jump height. As a 

result of this study entitled “Lower-Extremity Biomechanics and Maintenance of Vertical-

Jump Height During Prolonged Intermittent Exercise,” Schmitz et al. concluded that there 

were five principal components that contributed to this retention (324).  
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By the identification of these five components, it may be concluded that their 

maintenance is necessary for maximal jump height to be continually achieved. While many 

variables likely contribute, these principal components represent the total variance of factors 

involved. Moving forward, these participants and their coaches have a basis for measuring 

jump efficiency while participating in their respective intermittent exercises. Through the 

incorporation of this study, it may be concluded that principal component analysis is an 

effective means of interpreting unexpected or peculiar results.  

Another athletic field in which principal component analysis has been effectively 

applied is resistance training. In a study conducted by Sato et al., scientists observed the 

kinematic positioning of twenty-five participants (n=25) in barbell back squats. Attaching 

five different receptors to different points along their legs from their hips downward, 

scientists quantified ten different measurements indicative of individual squat techniques. 

With the assistance of SPSS technology, they identified two principal components: one 

above the hip and one below the hip (Sato et al. 4). With this data, they concluded that this 

data reduction would allow coaches to further focus their efforts on developing the 

techniques of these two components. This proves principal component analysis’s usefulness 

by minimizing time and energy that would have been otherwise exerted on addressing other 

elements less essential to an athlete’s barbell back squat technique. 

Aside from prominently athletic movements, principal component analysis has also 

been effectively used to quantify other biomechanical efforts. A study entitled “The Force 

Synergy of Human Digits in Static and Dynamic Cylindrical Grasps” sought to implement 

principal component analysis to demonstrate the primary movements that overarch the 

complexities of the human hand (1). Anatomically, the human hand’s many muscles are 
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interwoven. Thus, many of these muscles contribute to movements of several digits 

simultaneously and at different times. In the past, this has led to difficulties in quantitative 

analysis. However, Kuo et al.’s efforts in this study work are aimed to construct principal 

components to exemplify the inner workings of a human’s cylindrical grasps.  

Ultimately, what they found was that principal component analysis was able to 

establish principal components even amongst the overlaps. The resulting first principal 

component, PC1, was a result of both the index and middle fingers (Kuo et al. 5). However, 

the thumb and ring fingers were also recognized as contributors to the first component. This 

yielded approximately 70% of the variance for vectors in the anti-gravity direction and 97% 

of the variance in the direction toward the glass simulator (Kuo et al. 4). These results 

demonstrate the success of principal component analysis in extracting principal components 

from even the most complex data sets. Therefore, further research using principal component 

analysis to analyze the human hand holds the potential for enhanced understanding of its 

anatomical and physiological make-up. 

Principal component analysis has also been demonstrated as a tool in data 

interpretation for biomechanics in clinical settings. In a tutorial study entitled “PCA in 

studying coordination and variable,” principal component analysis was depicted for its 

proficiency in data reduction for “both kinematic and electromyographic data sets” 

(Daffertshofer et al. 417). This was executed through its implantation into various 

simulations that assessed the principal components on walking form. Results indicate that 

principal component analysis not only contributed in vast data reduction for more efficient 

interpretation of these whole-body movements, but also provided a “data-driven filter” 

through which to observe the overall biomechanics (Daffertshofer et al. 424).  



19 
 

Although it is often used within biomechanics as a preventative measure used to 

retain certain components, clinical biomechanical analysis may also be extended to better 

understand the different characteristics associated with preexisting conditions and disorders. 

In a similar manner, principal component analysis can also be used to identify principal 

components that are indicative to those who are suffering. By identifying these components, 

this experimental group may be effectively compared to a control group in order to interpret 

the underlying issues and plan future steps of action. One study that executes this usage of 

principal component analysis is one entitled “Biomechanical features of gait waveform data 

associated with knee osteoarthritis: An application of principal component analysis.” 

In this study, participants with knee osteoarthritis were paralleled to a control group 

to identify differences in gait biomechanics. With the assistance of technology, scientists 

collected three-dimensional data on all participants as they completed five walking trials at 

their own pace (Deluzio et al. 87). Overall, the results yielded eight principal components. 

Upon comparison of the scores for the control and experimental groups, Deluzio et al. found 

that four of these indicated characteristic differences between the two groups (91). These 

features include “the amplification of thee flexion movement, the range of motion of the 

flexion angle, the magnitude of the flexion moment during early stance, and the magnitude of 

the adduction moment during stance” (Deluzio et al. 86). Therefore, they were able to 

conclude that the study of these four principal components would better help healthcare 

professionals when diagnosing osteoarthritis. This result would not have been possible 

without the reductive and extractive properties of principal component analysis.  

Demonstrated by each of these diverse kinematic applications, principal component 

analysis clearly has a place within the realm of biomechanics. It bridges the gap in analysis 
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for movements from athletic technique and resistance to training across the spectrum to 

common movements such as cylindrical grasp and osteoarthritic joints. Still, principal 

component analysis may be further justified in everyday areas of life outside of sports and 

biomechanics. Over time, principal component analysis has become a revered tool in several 

fields, including neuroscience, genetics, demography, risk analysis, computer graphics and 

quality control (Suryanarayana and Mistry 21).  

As a global example of this quality control along with the application of agricultural 

concepts, one study conducted by colleges in China sought to quantify the efficiency of a 

water irrigation system using principal component analysis (Jia et al. 1). Because China’s 

water irrigation efficiency is currently less than 50%, their goal was to identify principal 

components for correction and future improvement. To execute this analysis, scientists 

identified twenty-two potential variables that affect the water irrigation system’s efficiency 

and ran them through both multiple stepwise regression (MSR) and principal component 

analysis. With the organizational reduction provided by principal component analysis, they 

found that their data had five principal components (Jia et al. 8).  

Upon reflection of the large difficulties surrounding China’s irrigation system, this 

reduction to five components from the original twenty-two factors allows for the narrowing 

of politicians’ and scientists’ focus on addressing their efficiency issues. It is much more 

tangible to address five issues than it is to be overwhelmed by twenty-two. Through this 

organization, addressing the principal components would allow the underlying issues of all 

factors to be addressed. This very much resembles a “kill two birds with one stone” concept.  
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In addition to providing practical guidance for problem-solving, principal component 

analysis was also used in this study to fill in the gaps left by multiple stepwise regression. Jia 

et al. acknowledged a limitation of MSR as being unable to reduce the data that is to be 

interpreted. Additionally, because multiple stepwise regression addresses linearly correlated 

variables, principal component analysis provided a process for analyzing the data while 

maintaining the integrity and validity of the factor analysis results (Jia et al. 1). 

Each of the studies mentioned above depicts the many positive attributes of principal 

component analysis as well as its ability to represent large sets of data with tangible, 

quantitative efficiency. However, it is equally important to acknowledge that other statistical 

methods may be favored for data depending on the field. With this being said, principal 

component analysis is a simple statistical tool that may be used effectively over a broad 

range of research categories. Established in many fields, future implementation holds the 

promise of increased human understanding concerning everyday events. Future research 

marks the doorway into even more examples of principal component analysis’s potential.  

VI. Fundamental Linear Algebra Concepts 

Prior to beginning a discussion of linear algebra topics and their relatedness to 

principal component analysis, it is imperative that one understand the basic definitions and 

principles of the field itself. This section is structured to provide general bases for various 

linear algebra concepts that are further applied throughout this thesis. It is also important to 

note that while this section provides an overview of general forms for the various 

mathematical objects, more extensive definitions may be found in any entry- level linear 

algebra textbook, including Elementary Linear Algebra: Applications Version. 
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Square matrices are bracketed sets of data that can be used to represent linear 

systems. They are of the size n   n, are denoted with uppercase letters, and are represented 

using the following notation: 

     

       

   
       

  

The subscripts associated with each entry represent the entry’s location in the matrix by row 

and column, respectively. The dots symbolize additional rows and columns for forms that 

extend beyond the typical 2   2 matrix. Although the above figure represents a square 

matrix, matrices may have other dimensions, m   n, with m rows and n columns where m 

and n are not equal. 

 An identity matrix is any n   n matrix with 1’s along the main diagonal and 0’s in 

all other positions. The main diagonal of a matrix extends from the uppermost, left-hand 

corner to the lower, right-hand corner. It takes the following form: 

     
   
   
   

  

A diagonal matrix is any n   n matrix in which the only entries that are values other 

than zero are along the main diagonal. Its general form is as follows: 
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A triangular matrix is any n   n matrix in which either the entries above or entries 

below the main diagonal are all zeroes. An upper triangular matrix has zeroes for all 

entries below the main diagonal. A lower triangular matrix has zeroes for all entries above 

the main diagonal. The general forms for both matrices with 4   4 dimension are provided 

below: 

Upper triangular =  

            

          

        

      

  

Lower triangular =  

      
        
          
            

  

 Matrix multiplication is performed to produce an individual product matrix as long 

as the dimensions of the two matrices   and   are m   r and r   n, respectively. Once this 

stipulation has been met, the resulting matrix will have dimension m   n. Matrix 

multiplication can be described by the following definition and may be repeated for each 

entry within the matrix: 

To find the entry in row i and column j of AB, single out row i from the matrix A and  

column j from the matrix B. Multiply the corresponding entries from the row and column  

together, and then add up the resulting products. (Anton and Rores 29) 

The determinant of a square matrix is a number assigned to the matrix according to 

certain rules. For a general 2   2 matrix,       
  

 , the determinant may be evaluated by 

multiplying entries         and         and multiplying         and        , then 
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finding the difference of the products. It may be denoted using either of the following two 

notations interchangeably: 

              

   
  

          

For matrices of dimensions larger than 2   2, a variety of other methods may be used to 

evaluate their determinants. These methods include cofactor expansion, row reduction, 

geometric interpretation and inspection. For diagonal and triangular matrices, the determinant 

may be calculated by multiplying all values along the main diagonal.  

 The inverse of a matrix   is denoted    . If the determinant of a matrix is equal to 

zero, the matrix is not invertible. For matrices where ad – bc ≠ 0, the inverse of a given 

matrix        
  

 , may be computed by the following formula: 

      
 

     
     
   

  

 The transpose of a matrix  , denoted   , represents the alteration of a matrix 

through the interchanging of rows and columns. It may be calculated for any m   n matrix. 

An example of this for a 2   3 matrix is exhibited below: 
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 The trace of a square matrix  , denoted      , is the sum of the entries on  ’s main 

diagonal. For matrices of dimensions m   n, where m ≠ n, the trace of   is undefined. 

According to Elementary Linear Algebra: Applications Version, its general form for a matrix 

of 3   3 dimension is as follows in Figure 1: 

     

         

         

         

  

        a11 + a22 + a33 

Figure 1: Formula for Trace of a Matrix; Anton, Howard, and Chris Rorres. Elementary Linear Algebra: 

Applications Version. 11th ed., Wiley, 2013, p. 36. 

Vectors are objects with both length and direction. They are often denoted as arrows, 

with the tail of the arrow being the initial point and the tip of the arrow being the terminal 

point. A visual representation of a vector may is depicted in Figure 2 as follows: 

 

Figure 2: Image of a Vector in 3-D Space; “Vectors.” The University of Sydney - School of Mathematics and 

Statistics, The University of Sydney, 9 Nov. 2009, www.maths.usyd.edu.au/u/MOW/vectors/vectors -7/v-7-

2.html. 

http://www.maths.usyd.edu.au/u/MOW/vectors/vectors-7/v-7-
http://www.maths.usyd.edu.au/u/MOW/vectors/vectors-7/v-7-
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While this indicates a vector in the positive direction for all components, it is important to 

note that the direction of the arrow may be in any orientation. Notation for a vector with 

initial point   and terminal point   is as a lower-case letter and is represented as follows: 

             

It may be represented as a parenthetical list of its components as follows: 

  = (v1, v2, …, vn) 

It can also be denoted using a column matrix with n   1 dimension as demonstrated below: 

     

   

 
   

  

 The norm of a vector  , also known as the length or magnitude of that vector is 

denoted    . For a vector     (v1, v2, …, vn), it may be computed by taking the square root 

of the sum of its squared components, using the following formula: 

    =    
    

       
  

 Unit vectors are vectors that have a norm value of one. They are denoted with a 

lower-case  . The unit vector for a given vector   extends in the same direction as the 

original vector and may be computed using the following formula: 

  = 
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VII. Implementing Linear Algebra 

Matrices 

Within any mathematical process that takes place, the first order of business is 

establishing a method of recording and organizing one’s data. Generally, tables and graphs 

provide sufficient structure for mathematical data. However, linear algebra relies on the 

heavy implementation of matrices. As it has already been mentioned above, a matrix is a 

form of representing linear equations or systems. In most cases, matrices only contain the 

coefficients of their respective data. 

For principal component analysis, the usage of matrices is an integral part of the 

process. Before data that has been collected can be properly analyzed, it must first be 

incorporated into matrices. For each item being assessed within the data system, multiple 

factors are often assessed. Each item may therefore be represented as a vector in matrix form 

with entries being designated for specific factors for consistency purposes (Jauregui 1). Since 

matrices are row and column specific, this allows computations to be executed with ease 

instead of exhaustion over sifting through each individual record.  

To illustrate this visual representation and use of linear algebra in principal 

component analysis, consider the following example of data taken from a practice problem in 

Linear Algebra and Its Applications (Lay 489). As a practical application, this is similar to 

collecting the heights and weights of six different people. Table 1 indicates the two variables 

categorized for six different individuals. For mathematical manipulation for principal 

component analysis, the data from Table 1 was placed in Matrix 1, with each column 

representing a different individual and each row representing height and weight, respectively.  



28 
 

 Individual 
#1 

Individual 
#2 

Individual 
#3 

Individual 
#4 

Individual 
#5 

Individual 
#6 

Height 19 22 6 3 2 20 

Weight 12 6 9 15 13 5 

Table 1: Data taken from Linear Algebra and Its Applications, p. 489, #2. 

 
         
         

  

Matrix 1: Data from Table 1 

 Once data has been organized in entry-specific matrices, it must be transformed into 

mean-deviation form. Mean-deviation form is executed by calculating the sample mean,  , 

of the data to represent the “‘center’ of the [data’s] scatter plot” (Lay 484). This may be done 

by the following procedure where   , …,    are the observation vectors, or data taken 

from each individual. First, the sample mean is calculated: 

   
 

 
          

   
 

 
  

  
  

    
  
 

    
 
 
    

 
  

    
 
  

    
  
 

    

    
  
  

  

Then mean-deviation form depicts the data in a      matrix of the following form 
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where   
        when         (Lay 484). In this example, mean-deviation form is 

as follows: 

    
           
         

 . 

The versatility of matrices themselves allows manipulation while retaining the 

integrity of the data it contains. This is heavily relied upon as large data sets are reduced or 

rotated in principal component analysis (Meyers et al. 428). Covariance matrices and 

orthogonality each provide useful structures for representing principal component analysis 

procedures and results. As a part of extraction, principal component analysis generates ones 

along the main diagonal of the correlation matrix (Meyers et al. 423). 

 Using the described mean-deviation form, another linear algebra matrix form known 

as a covariance matrix should be computed. The covariance matrix,  , is a       matrix in 

which the mean-deviation form is transformed by the following definition: 

   
 

   
    

In this example of Olympic running finalists, the approximate covariance matrix is as 

follows: 
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Eigenvalues, Trace and Eigenvectors 

The field of linear algebra defines an eigenvector of a given square matrix   as a non-

zero vector that when multiplied by the matrix   is equal to the product of itself by some 

scalar. This may be formulated as an equation with matrix  , eigenvector x and scalar λ as in 

Figure 3: 

 x = λx 

Figure 3: Formula for Relationship between an Eigenvector, an Eigenvalue, and the Original Matrix; Anton, 

Howard, and Chris Rorres. Elementary Linear Algebra: Applications Version . 11th ed., Wiley, 2013. 

This scalar λ is called an eigenvalue of  . In linear algebra, eigenvalues may be 

computed through the development of a characteristic equation. Formally, the characteristic 

equation may be computed using the following formula: 

              

For principal component analysis, eigenvalues are also valuable for the interpretation 

of data. Also known as characteristic roots, the eigenvalues of a data set are the “sum of 

squared correlations for each component over the full set of variables” (Meyers et al. 420). 

The squared values within this sum are the distances between variables within a given 

principal component and may also be identified as component loadings (Introduction to 

Principal Components and Factor Analysis). Therefore, each principal component has an 

eigenvalue that reflects the variation present within it. 

For example, using the covariance matrix  , one may find the eigenvalues using the 

following procedure: 
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 By setting this quadratic equation equal to zero and implementing the quadratic 

formula, the eigenvalues of this data were computed to be         and         

Additionally, the sum of all eigenvalues equals the total variance. Thus, the presence 

of eigenvalues in principal component analysis is significant because they reflect a part of the 

whole. They allow statisticians to numerically comprehend the distances between any entry 

in the set of data and its principal component (Meyers et al. 420). 

 The total variance of a data set may be computed by calculating the trace of its 

covariance matrix. This is accomplished by adding all values along the main diagonal. The 

total variance of   is as follows: 

            

          

Eigenvectors, therefore, are used to represent the principal components themselves 

within principal component analysis. From a linear algebra standpoint, eigenvectors represent 

linear transformations of a given square matrix. In a similar manner, the principal 

components are linear combinations that represent the variance in the original data set 
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(Introduction to Principal Components and Analysis). They are modified by weighting based 

on their orthonormal contribution to the total variance present (Jauregui 6).  

In the example illustrated above, principal components, or eigenvectors, may be 

calculated as follows: 

For       : 

 
     
      

        

By interpreting this equation using row reduction, one may calculate the following 

linear combination,                  which simplifies to    
    
  

 . To convert it to a unit 

vector length, it may be divided by its norm:                     Thus, the 

corresponding eigenvector for eigenvalue        is as follows: 

  
 

    
 
    
  

      
    

  

  For      : 

 
       

      
        

By interpreting this equation using row reduction, one may calculate the following 

linear combination,                    which simplifies to    
   
 

 . To convert it to a 

unit vector length, it may be divided by its norm:                    Thus, the 

corresponding eigenvector for eigenvalue       is as follows: 
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VIII. Importance in Biomechanics  

In biomechanics, the importance of principal component analysis is evident in its 

application concerning data and its subsequent interpretation. While it has been established in 

various biomechanical branches in previous research, its application regarding running form 

and technique is still expanding. This is likely due to the fact that running is one of few 

sports that requires one to use nearly all of his or her muscles at one point or another. Unlike 

simpler movements, the data sets may be excessively large. Because of the vast capabilities 

of principal component analysis regarding data set size, this is all the more a reason to use it 

to quantify running biomechanics. Therefore, the purpose of this portion of this thesis is to 

synthesize past research studies utilizing principal component analysis on running to 

establish its potential in the future development of the sport. General kinematic background 

material necessary for understanding biomechanics is also provided.  

As defined by Roberston et al., three-dimensional kinematics is the “description of 

motion 3-D space without regard to the forces that cause the motion” (35). Coordinate 

systems and segments are concepts used to mathematically quantify anatomical body 

structures and positions. Most often, joints are expressed as the terminal points with vectors 

extending in the directions of the limb and options for movement. Range of motion (ROM) 

encompasses the range of angles in which a joint may be flexed, extended or rotated. 

Biomechanics is similar to linear algebra and principal component analysis in that it also 

implements linear transformations which may be interpreted. 
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While raw computations may be used to evaluate these angles and rotations, 

obtaining biomechanical data has been expedited by technological development. This has 

been deemed particularly advantageous in collecting and interpreting large data sets. If 

movement is expressed as a function of time, it is often generated as waveform data 

(Robertson et al. 317). In cases with many participants, a separate waveform may be 

displayed for each. Their visual similarities and overlaps depict correlations and foreshadow 

relationship development. 

Although visual interpretations are beneficial, they are not all- inclusive. Having a 

plethora of data present may make it difficult to mathematically analyze. Principal 

component analysis provides a method of data reduction that develops the most important 

components while maintaining the shape and integrity of the original data set. It can also be 

used to quantify discrimination between groups and in the development of future hypotheses 

(Robertson et al. 319). In the world of running, being able to discern between good technique 

and bad technique is essential if one wants to improve. Deciding which part of one’s form is 

counterproductive is inefficient may be difficult because of how much of one’s body is 

involved. However, with research implementing principal component analysis, optimizing 

one’s personal performance is no longer a fantasy.  

In a study entitled “Motor Patterns in Human Walking and Running,” scientists did an 

elementary study on just that. The objective of their study was to use principal component 

analysis to compare and discriminate between the kinematic sequences of walking and 

running (Cappellini et al. 3427). Using nine cameras and infrared reflective markers for data 

collection, scientists recorded participants’ exercise at a variety of speeds on a treadmill. 

Results indicated that both walking and running have the same five principal components. 
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However, they may be uniquely identified by the differences in foot-strike timing (Cappellini 

et al. 3434). Through this implementation, principal component analysis was effective in 

“standardizing” two seemingly different sets of data.  

While many studies are structured to interpret qualitative information like those 

above, other studies seek to quantify the differences between athletic performances based on 

age, gender, experience level, training background and many other variables. From a 

competition standpoint, these studies yield a practical application with which most athletes 

are primarily concerned. Based on the amount that one athlete trains, is there really a 

difference that sets one apart as a more proficient athlete or is it all based on luck and natural 

abilities? Does the fact that I am a female naturally dispose me to certain techniques that are 

indicative of less efficient movement than those of my male teammates? 

Although it may seem impossible to ask these qualitative questions, principal 

component analysis may be used to quantify them. This may be examined through a study 

that chose to use a tri-axial accelerometer to examine the differences between soccer players, 

new runners and experienced marathoners (Kobsar et al. 2509). In this study, scientists used 

a single tri-axial accelerometer to capture data pertaining to the treadmill running patterns of 

its participants. From the forty- four variables that were classified, principal component 

analysis was used to retain eight principal components (Kobsar et al. 2509). These results 

indicated that the accelerometer was capable of correctly classifying 85% of the runners 

based on their training backgrounds (Kobsar et al. 2508). While it could not differentiate 

between experience levels, principal component analysis proved to be a sufficient means of 

organizing other biomechanical measurements for assessment. 
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Outside of the athlete’s mentality of winning, principal component analysis may be 

used in other ways to assess one’s running. It may also be used to analyze the influences of 

various efforts, conditions and other elements on one’s performance. In a study focused on 

evaluating the influence of exertion on leg joint mechanics while running, scientists were 

purposed with defining its relationship to athletic injury (Benson and O’Connor 250). As a 

long-distance runner who broke my leg racing in a collegiate track and field 5,000 meter race 

from simply overexerting on a preexisting stress fracture, I can personally attest to the 

usefulness of this application. 

In this study, female runners with no preexisting injuries underwent pre-run, 

examination and post-run series observations. The pre-run and post-run assessments were 

generated using retroflective markers at the major joints in order to quantify the differences 

between pre- and post-workout. Afterwards, principal component analysis was used to depict 

significant, mathematical changes in joint angles and movements. Upon observation, results 

indicated that there were discrepancies in movements of the ankle, knee, and hip (Benson and 

O’Connor 253). Ankle eversion was greater after participants ran and can be associated with 

unnecessary tibial rotation. These connections imply that principal component analysis’s 

reduction to conclusions regarding technique should be used to design programs that protect 

athletes from naturally occurring injuries.  

While each of these studies depicts a different application within the field of 

biomechanics, each is representative of a body of studies that have been developed on their 

respective topics. Each study demonstrates principal component analysis’s usefulness in 

evaluating biomechanical data within running. However, in order to achieve a more complete 

understanding of the concepts quantified in each, more research is needed. Principal 
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component analysis offers a promising future in understanding the inner workings of running 

biomechanics in a more holistic way. It provides coaches and athletes alike with 

mathematical representations to fill the gaps within their visual observations. All that is 

necessary is more detailed exploration. 

IX. Connections to Other Branches of Mathematics 

With respect to the overall purpose of this thesis, principal component analysis was 

depicted through the perspectives of linear algebra and biomechanics. In previous sections, 

concepts native to linear algebra were outlined as significant contributors to this tool for data 

evaluation. Applications were demonstrated for the field of athletic performance. As 

mentioned earlier, these extensions are not solely of academic reward. Principal component 

analysis also provides athletes and coaches with necessary tools to improve movements vital 

to their respective sports. In addition to this interdisciplinary illustration, principal 

component analysis can also be found extremely useful in other areas in the field of 

mathematics. 

In its most basic form, principal component analysis is rooted in statistics. While 

linear algebra has been demonstrated as its foundation, its usefulness is still primarily as a 

purely statistical measure. Aside from analysis of biomechanical data, principal component 

analysis can also be used to statistically represent other fields. Several fields include, but are 

not limited to, finances, the stock market, systematic risk, and environmental conditions. Not 

only can principal component analysis be used to identify patterns, but it may be further used 

to make predictions in each field.  
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In addition to explicitly statistical fields, principal component analysis has also been 

acknowledged as a vital contributor for computations and interpretations of data within the 

field of physics. Even coined as “quantum principal component analysis,” principal 

component analysis is specifically used to provide physicists with a quantitative method for 

evaluating an unknown quantum state.  This unknown quantum state is primarily denoted ρ. 

Quantum tomography is a widely used practice for “discovering features of an unknown 

quantum state” (Lloyd et al. 631). Because the state is often composed of multiple copies or 

dimensions, it is hypothesized to be an aid in its own analysis. 

Once eigenvalues and eigenvectors have been established, the formation of a density 

matrix as well as the extraction phase of principal component analysis are useful in 

representing the data in a concise way. Through extraction, key features of the unknown state 

may be identified. Upon further development, quantum principal component analysis (qPCA) 

may lead to the construction of principal components “in time O(logd), an exponential speed-

up over existing algorithms” where d denotes the number of dimensions in a Hilbert space  

(Lloyd et al. 631). Moreover, qPCA opens the door for future physical understanding of the 

unknown state as well as other established states, such as the Choi-Jamiolkowski state (Lloyd 

et al. 632). 

Another application within the realm of physics may be found in the study of 

turbulence. Turbulence is acknowledged by the scientific community as the irregular flow of 

a fluid in which its speed undergoes drastic changes (Serway et al. 339). In a study entitled 

“Principal Component Analysis studies of turbulence in optically thick gas, ” scientists used 

several data analysis methods to evaluate the sensitivity of the velocity power spectrum in 

opaque gaseous forms (Correia et al, 1). Using Position-Position-Velocity (PPV) cubes, they 
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investigated both fractional Brownian motion (fBm) and magnetohydrodynamics (MHD) 

simulations for changes and components of PPV cubes in a wide range of opacities.  

Using principal component analysis, Correia et al. found that principal component 

analysis retained its effectiveness in detecting velocity and density spectra changes even 

within high opacity environments (5). In doing so, they concluded that principal component 

analysis could be a “valuable tool for studies of turbulence at high opacities provided that the 

proper gauging of the PCA index is made” (Correia et al. 1). In essence, this study’s results 

indicated that principal component analysis’s usefulness supersedes other methods in some 

areas of physics. While there is still much research to be done to address inconsistences and 

irregularity in some results, physicists still are beginning to quantify turbulence in ways they 

had not been able to before. 

X. Future Significance 

As illustrated in the various sections throughout this thesis, the implementation of 

principal component analysis has a profound impact on the field of biomechanics. Through 

its extensive use of linear algebra and statistics, it has been deemed an effective method for 

interpreting and analyzing data, reducing data into primary variables and providing a 

platform for further hypotheses regarding the nature of the research being evaluated. Not 

only has it extended into the mathematical field of physics and personal movement and 

athletic motion, but it permeates a variety of other practical platforms. Therefore, current 

research results yield its success across a broad spectrum. However, principal component 

analysis still has a plethora of untapped potential yet to be discovered and observed.  
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Within the large field of mathematics, principal component analysis has been 

observed through the perspectives of statistics, linear algebra and physics. Concepts in all 

three platforms are fundamental to one’s understanding of principal component analysis 

computations. In turn, principal component analysis is established as a meaningful method of 

interpreting everyday applications of these fields. Moving forward, more extensive 

understanding of these applications as well as the discovery of other applications are to 

come. 

Personally, I hope to continue developing my conceptual understanding of the linear 

algebra inner workings of principal component analysis. As a statistical tool that is primarily 

used through the assistance of technology, it is challenging to exhaustively understand the 

procedural progressions that principal component analysis utilizes. While I feel that I have a 

solid understanding of how covariance matrices, orthogonality, eigenvalues and eigenvectors 

are critical components of the process, there are still some areas where I must turn to 

technology, software and research to fill the gaps. A goal of my future research in this field 

will be to discover other linear algebra concepts that are useful in bridging these gaps.  

Pertaining to the field of biomechanics, there are also a several kinematic 

opportunities for the development of principal component analysis. While it has been used to 

analyze data regarding the mechanics of walking, athletic movements and physical therapy 

related conditions, its results for future improvement have mildly been explored. More 

specifically, the population of coaches and athletes that review this data as if it were “game-

time film” remain in the vast minority. In the future, the application of principal component 

analysis’s progress may have a lasting impression on performance improvement on the lives 

of those who take it seriously. 
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As a runner, I plan to continue studying principal component analysis from this much 

more personal perspective. Throughout my athletic career prior to college, I was always 

referred to as “T-Rex” for the way I carried my arms. Upon coming to college, Coach Brian 

Baker has helped me to identify the cause of this as well as other motions that hinder my 

speed and comfort when I race. While I have improved throughout my time at Gardner-

Webb, I plan to pursue future opportunities where I can use principal component analysis to 

further characterize my own athleticism. As an aspiring teacher and occupational therapist 

for the special needs’ population, I conjecture that there will also be ways through which I 

can also apply principal component analysis for my students in both areas. Not only will this 

improve my athletic performance and the biomechanics of my students’ movements, but it 

will solidify my conceptual understanding of this application of principal component 

analysis. 

In conclusion, the future implementation of principal component analysis is bright 

and unlimited. Although sometimes viewed as primitive and basic in a world full of 

statistical analysis methods, it contains foundational mathematics that may be universally 

effective in positively impacting the average individual. While its efficiency in the fields of 

mathematics and biomechanics have been emphasized within this thesis, practical use on 

everyday events are budding. Mathematicians, coaches, and actuaries alik e will soon be able 

to investigate their respective fields and make accurate hypotheses that shape and improve 

the world population’s daily living experiences. 
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